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ABSTRACT 

It has been shown by W. Arendt - C.J.K. Batty and Yu.I. Lyuhich - 

V.Q. Phong that  the powers of a linear contraction on a reflexive Banach 

space converge strongly to zero if the boundary spectrum is countable and 

contains no eigenvalues. In this paper we characterize the countability of 

the boundary spectrum through a stronger convergence property in terms 

of ultrapower extensions. 

1. Stable opera tors  

The powers T" of a bounded linear operator T on a Banach space E might 

exhibit quite different behavior as n tends to infinity ranging from very regular 

to very irregular ('chaotic'). An appropriate notion for describing regular (and 

well understood (see [Na])) behavior seems to be the following. 

De/inition 1.1: A bounded linear operator T E s E a Banach space, is called 

stable if {T"z : n E N} is relatively compact for every x E E, i.e., {T" : n E N} 

is relatively compact for the strong operator topology on L(E). I 

Two contrasting examples show the range of this notion. 

ExampJe 1.2: (a) Let G be any compact group. Fix an element g E G and 

define on E := C(G) the operator Tj(h)  := f(hg) for all h E G and f E C(G). 

Then Tg is called the (right) ro ta t ion  opera tor  induced by g. Since g ~ Tg 

is continuous from G into L(E) endowed with the strong operator topology and 
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since Tan = (Ta)" it follows that {T~ : n  �9 N} is relatively compact and hence 

Tg is a stable operator. 

(b) On the other hand every T �9 s  satisfying lim,,-.oo [iT'll[ -- 0 for 

every x �9 E is stable. A concrete example is the shift T : (zn) ~ (Zn+l) on 

I p, l _ ~ p < o o .  | 

In many cases, e.g. for power bounded operators on reflexive Banach spaces, 

one already knows that {T n : n E N} is at least relatively compact for the 

weak operator topology. Then the Glicksberg-deLeeuw splitting theorem can be 

applied yielding very useful information. We refer to [Kr], 2.4.4, 2.4.5, but briefly 

state the result in the form we will make use of it. 

PROPOSITION 1.3: Let T be a power bounded linear operator on a reflexive 

Banach space E.  Then E is the direct sum of the two closed T-invarian~ subspaces 

m 

Er := lin{x �9 E : there exists A �9 C, [A[ = 1, such that T z  = Az} 

and 

Ew, := {y e E :  0 is a weak accumulation point of {Tny : n �9 N}}. 

Moreover, the weak operator closure of {T n : n E N) restricted to Er is a group 

which is compact in the strong operator topology on s Er). 

From this splitting theorem it follows that the orbits {Tnx : n E N) are already 

relatively norm compact for every x E Er. Hence we only have to improve the 

convergence towards zero for y E Ew,. This is stated as a corollary. 

COROLLARY 1.4: Let T be a power bounded linear operator on a reflexive Ba- 

nach space E. Then T is stable i f  and only i fEws coincides with Es := {y E E : 

limn--.oo ][Tny[[ -- 0}. 

It is therefore important to have good criteria for the strong convergence to 

zero of the powers T n. We concentrate on spectral conditions using the following 

'rule of thumb': the thinner the part of the spectrum a(T) situated on the unit 

circle F := {A 6 C : [A[ = 1} the better the convergence to zero of T n. 

In fact, Arendt and Batty [A-B] and independently Lyubich and Phong [L-P1], 

[L-P2] found the following beautiful result which we again only state for reflexive 

Banach spaces. 
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THEOREM 1.5: Let T be a power bounded linear operator on a reflexive Banach 

space E. If 

(ABLP)  A := a(T) N F is countable, 

then T and its adjoint T' is stable. 

Proof: We perform the Glicksberg-deLeeuw splitting and obtain that for the 

restriction Tws of T to Ews the boundary spectrum a(Tws) N F is still countable 

but T~o has no eigenvalues on F. Therefore Theorem 5.1 in [A-B] or Theorem 

2 in [L-P2] implies that limn--.oo [[Tnx[[ = 0 for every x E E ~ .  The stability on 

Er is clear from the characterization of Er in Proposition 1.3. The stability of 

T' follows by the same arguments since a(T') M F = a(T) M F. I 

We have seen that the spectral condition (ABLP)  implies stability. But even 

in the absence of point spectrum this is not necessary. 

Example 1.6: Let S := L2(D, m) for D := {A e C : [A[ _< 1} and m the Lebesgue 

measure. Take the multiplication operator Mr(A) := A. f(A) for A E D, f E E. 

Then a(M) = D, the point spectrum Pa(M)  is empty but limn--.~ [[Mn/[[ = 0 

for every f E E, i.e., M (and M') is stable but a(M) N F = F. I 

While condition (ABLP)  is not necessary it is 'optimal' in the sense explained 

by the following example. 

Example 1.7: Let A be a closed uncountable subset of F. By [Se], 19.7.6, 8.5.5 

there exists a diffuse probability measure # whose support is contained in A. On 

E := L2(A,/~) we take again the multiplication operator Mr(A) := A-f(A) for 

A E A, f E E, and obtain that M is not stable. In fact, Pa(M)  = 0 since ~ is 

diffuse. Therefore E = ETa and it follows from Corollary 1.4 that M is stable if 

and only if limn--.oo [[Mnf][ = 0. But M is an isometry. I 

These observations and examples lead to the following question which is to be 

answered later. 

PROBLEM 1.8: Given a power bounded linear operator T on a reflexive Banach 

space E, which convergence property of T (or some relative of T) is equivalent 

to the spectral condition 

(ABLP)  a(T) N F is countable? 
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2. Superstable operators 

We propose to answer Problem 1.8 using ultrapower techniques and recall briefly 

the basic definitions. For more details and a wealth of interesting results we refer 

to [He], [H-M], [Si] or [St]. 

Definition 2.1: (a) Let E be a Banach space and/4 a (free) ultrafilter on N. 

Consider the Banach space IC~ of all bounded sequences in E and its dosed 

subspace cu(E) of all bounded sequences converging to zero along/4. We call 
the quotient space Eu := Ico(E)/cu(E) the (14-)ultrapower of E and denote 

its dements by ~ = (zn)n~N + cu(E) (or simply ~ = (zn),eN). Recall that 

I1 11 = u -  l imll=.l l  for every ~ -- (x.).EN E EU. 

(b) Let T E s  and define an operator Tu E s by ru~ := (Txn),,eN + 

cu(E)  for every = e Eu. I 

Since E is isometrically imbedded in Eu (via x ~ (x,x, ...)) it follows that 

Tu is an extension of T to Eu, clearly preserving many properties of the original 

operator. In particular, since T ~-* Tu is an algebra homomorphism from f.(E) 

into s invertibility of T and therefore the spectrum a(T) of T coincides 

with a(Tu). Moreover, and this is one of the main advantages of ultrapower 
techniques for our purpose, the approximate point spectrum 

Aa(T) := {A E C: there exist x, E E, II .II = i 

such that lim IITxn - Ax,~ll = 0} 
n ---~ OO 

is converted into the point spectrum Pa(Tu) of Tu. Since the topological bound- 

ary of a(T) is always contained in Aa(T) (see [Do], Thm.1.16) it follows that for 

a power bounded operator the boundary spectrum A := a(T) N F is contained 

in Pa(Tu). We restate these facts in the following proposition, but refer to [Sc], 

Ch.V, w for proofs and numerous applications. 

PROPOSITION 2.2: Let T E f..(E) and Tu be its canonical extension to some 

ultrapower Eu. Then a(T) = a(Tu) and Aa(T) = Pa(Tu). 

The coincidence of a(T) and a(Tu) has the consequence that Tu satisfies 

(ABLP) if (and only if) T satisfies (ABLP). So, we obtain stability of Tu 

from Theorem 1.5 whenever T (and hence Tu) is power bounded and Eu is re- 

flexive. We point out that the reflexivity of E does not imply the reflexivity of 

Eu in general. The reflexive Banach spaces having one (and hence all) ultra- 

power(s) reflexive are called superreflexive and include, e.g., all LP-spaces for 
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1 < p < oo. For later use we recall that the dual of an ultrapower of a super- 

reflexive Banach space is (isometric to) the ultrapower of the dual Banach spa~,  

(Eu)' = (E')u and the canonical bilinear form for elements �9 EU 

and (~,,)neN �9 (E ' )u  is 

((z,,), (~,,)) = U - lira (zn, ~ , ) .  

This and other facts about superreflexive Banach spaces can be found in [He], 

w [H-M], w [Si], w w or [St]. We state the stability result d e d u ~ d  above 

from Theorem 1.5. 

COROLLARY 2.3: Let T �9 be a power bounded operator on a superrd]ex/ve 

Banach space E. If 

(ABLP) h := aCT ) N r is countable, 

then the extension Tu of T to every ultrapower Eu is stable. 

Since the space Eu and the operator Tu are extensions of E and T respectively, 

it is dear  that the stability of Tu is a much stronger property than just the 

stability of T. Therefore it might be worthwile to give it a name. 

Definition 2.4: An operator T �9 s  is called s u p e r s t a b l e  if for every ultra- 

power Eu the extension Tu �9 s of T is stable. | 

With this terminology Corollary 2.3 says that power bounded operators on su- 

perreflexive Banach spaces satisfying the spectral condition (ABLP) are super- 

stable. These observations lead us to propose the following conjecture regarding 

Problem 1.8. 

CONJECTURE 2.5: A power bounded linear operator on a superreflexive Banach 

space is superstable if and only if  it satisfies ( ABLP). 

Before proving this conjecture in the following section we present two exam- 

ples showing that (a) superstability is strictly stronger than stability and (b) 

superreflexivity is necessary. 

Example 2.6: (a) Let E := 12 and T E s  be the shift operator which clearly 

is stable (see Example 1.2 a)). Denote by e ,  the canonical unit vectors in 12 and 

take ~ := (an)naN 6 Eu for some ultrafilter U. Since 

[[T~ - T~[[ =/A - lim][e,+k - e,+l[[ = Vr2 for k ~ 1, 
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we see that {Tt~ : n �9 N} is not relatively compact, hence Tu is not stable. 

(b) Let E := lP(In~), 1 < p < ~ ,  be the/P-sum of the spaces l~.  The space E is 

reflexive, but not superreflexive. Choose an increasing real sequence 0 < an T 1. 

The multiplication operators Tn : (~1, ...,~,,) ~" (axe1, ... ,a,,~n) on l~  induce 

an operator T �9 /:(E) by T : (xn) ~ (Tnxn). This operator is a contraction 

having spectrum a(T) = {an : n �9 N} U {1}, hence it is stable. On the other 

hand the elements z,n := (z(,, ra)) �9 IP(l~) defined by z(n m) = 0 for n # m and 

z~ ' ' )  = (1, . . . ,1) �9 l~  yield ;~ := (Zm)meN �9 EU for which { T ~ : n  �9 N} has no 

convergent subsequence, i.e., Tu is not stable. 

3. S pe c t r a l  cha rac t e r i za t i on  o f  supe r s t ab l e  o p e r a t o r s  

We now start to work on Conjecture 2.5 and, in the end, succeed by confirming it. 

To this end we recall or prove results from (i) the theory of ultrapowers, (ii) the 

geometry of Banach spaces and (iii) the theory of operators on Banach lattices 

which bare some interest in themselves. Their combination will then yield the 

desired and final theorem. 

We always consider a power bounded operator T E /:(E) on some Banach 

space E. Since 

|xlU := sup{llT"xll : n �9 N}, �9 �9 E,  

yields an equivalent norm on E making T a contraction we already assume 

]ITII _< 1. 

In the first lemma we recall, from [St], Prop.2.1, that the formation of ultra- 

powers can be iterated. 

LEMMA 3.1: Let E be a Banach space and let Ll and Y be ultrati/ters on N. Then 

the iterated ultrapower ( Eu )v is isometric to E u x v  where Ll x Y is the ultra~lter 

on N • N det]ned by W E Ll • ]l i f  and only i f  {n : {m: (m,n)  �9 W }  f i l l }  �9 l). 

The isometry r : (Eu)v ~ E u x v  is given by 

ff(((Zm,.),neN + cu(E)).eN + cv(Eu)) := (z~,.)(~,n)eN• + CUxV (E). 

Clearly Eu• can be identified with an ultrapower Ew for an appropriate ul- 

trafilter W on N. Applying this to the ultrapower extensions of the operator 

T E s  yields the following commuting diagram: 
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T}v 
E w  ~ E w  

( E u ) v  - , ( E u ) v  
(Tu)v 

Our next proposition is an immediate consequence of this observation. 

PROPOSITION 3.2: Let E be a Banach space and T E s  Then T is super- 

stable i f  and only i f  Tu is superstable for every ultra//Iter/4 on N. 

By passing to an ultrapower it follows from Proposition 2.2 that the approx- 

imate point spectrum becomes point spectrum. But the boundary spectrum 

a(T)  n F is always contained in An(T) .  In view of Proposition 3.2 above this 

allows us to assume that 

A := a(T)  n F 

consists of eigenvalues only. We restrict T to the closed subspace generated by the 

corresponding eigenvectors and obtain an operator with 'discrete spectrum' (see 

[Sc], p.208 for this notion) which is always an invertible isometry (see Proposition 

1.3). We will see that if such an operator has uncountably many eigenvalues it 

induces a unimodular multiplication operator M on a sufficiently large Banach 

sequence lattice. Here a Banach  sequence latt ice is a space Z of sequences 

which is a vector lattice with respect to the canonical ordering and is an ideal in 

l ~ containing 11. Moreover Z is complete with respect to a lattice norm. 

PROPOSITION 3.3: Let T be an isometry on a Banach space E and lef P a ( T ) N F  

be uncountable. Then there is a Banach sequence lattice Z, an isometry ~ : Z --~ 

E,  a sequence (A,),eN in P a ( T )  n F and a multiplication operator M 6 f ( Z )  

given by M ( a . )  := (Ana.) for (a . )  6 Z such that a (M)  = {A. :n  6 N} C_ F is 

uncountable and the following diagram commutes: 

T 
E ~ E 

Z ~ Z 
M 
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Proof: Via the map exp(27rit) ~ t, t e [0,1), we identify Pa(T) n F with an 

uncountable subset D of [0,1). Let (#~)oeh be a maximal Q-linearly independent 

family in D \ Q. Clearly (g=)oCA is uncountable. Let (gn),,eN be a countable 

subfamily of (#=)=CA such that the closures of {g .  : rt �9 N} and {#o : cr �9 A} 

coincide. Then ~ .  := exp(27ri#.) �9 Pa(T) n F and {.~. : n �9 N} is uncountable. 

The Q-linear independence of (g.),,eN implies 

(1) {(~i  ~, . . . , ~ ) : m  �9 N} = r n for every n �9 N 

(see [H-R], p.408). 
Let now x,~ �9 E,  IIx~l[ = 1, satisfy Tzn = .Xnxn, n �9 N. We claim that 

(x,,),,~N is an unconditional basic sequence with unconditional constant 1 (see 

[L-T], p.18 for this notion). 

In fact, for every m, n �9 N and every choice of scalars (al,  ..., a,~) we have 

n n n 

k = l  k = l  k = l  

since T is an isometry. By (1) this implies 

n /g 

(2) It ~ a,x~il = it ~ a~x~li 
k = l  k = l  

for all choices of ~k, IZkl = 1, 1 < k < n. Then for all m,n E N, n < m, and 

every sequence of scalars (ak)~N we have 

n 71~ n m m 

, E +, E 
k = l  k----'l k----1 kmnq-1 k----1 

hence (Zn)neN is a Schauder basis of G := li-'-n{zn : n E N} (cf. [L-T], 1.a.3). 

Moreover, if ~[~keN akzk converges, then by (2) the series ~keN ak~kZk is con- 

vergent for every sequence (~n)neN of unimodular scalars and 

(3) II ~ a*=*ll = II ~ a~=*ll. 
kEN kEN 

This shows in fact that (z,),,eN is an unconditional basis with unconditional 

constant 1 (cf. [L-T], 1.c.5, 1.c.1). 
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If ~keN akxk is convergent, then the series ~[~keN bkx~ is convergent for every 

sequence of scalars (b~)~es with [b~[ _< ]a~], k e N (cf. [L-T], 1.c.6) and by (3) 

and [L-T], 1.c.7, we have 

(4) II bk  ll-< II = II la l  ll. 
kEN kqN kEN 

Hence Z := {(a~)k~N E C N : ~ k ~ N a k z k  converges} endowed with the norm 

II(a~)k~Nll := tl ~ N  lakl~l l  is a B = a c h  sequence lattice and the mapping 

q2: (ak)kcN ~ Z a k z k  
kqN 

is an isometry. Clearly, i fM : Z ~ Z : (a~)keN ~ (Aka~)keN is the multiplication 

by (Ak)keN then a ( M )  = {A,, : n E N} C r is uncountable and the diagram above 

commutes. | 

Remark: If E is reflexive, then the dual space Z' of Z is again a Banach sequence 

lattice and the duality is given by 

kEN 

for (ak) e z ,  (bk) e z ' .  I 

In the third preparatory proposition we show that ultrapowers of operators as 

they appeared in Proposition 3.3 always contain multiplication operators on a 

diffuse Banach lattice. Here we follow the terminology and use various results 

from [Sc], Ch.II. But first we need the following decomposition of probability 

vectors in finite dimensional Banach lattices. 

LEMbIA 3.4: Let E :-~ C n be endowed with a lattice norm ]l.ll and its d u d  

norm H ' .  Then for every vrobabi~ty vector ~ = (~1, . . .  , ~ , ) ,  i.e., ~ e X~_ and 

E L ,  ~k = 1, there e ~ s t / ~  = (/31, ... , /~,)  e E+ and -~ = (~, ,  ... , ~ )  e E~_ such 

that I1~11 = 1 = I1~11' and ~ k w  = ~k for 1 < k < ~.  

This lemma is proved, e.g., in [T-J], Lemma 39.3, and allows one to embed 'dif- 

fuse multiplication operators' into the ultrapower of operators as in Proposition 

3.3. More precisely the following holds. 
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PROPOSITION 3.5: Let E be a superreflexlve Banach sequence lattice and T E 

s E) an isometric multiplication operator T( zn ) := ( A . x . ) f o r  ( z . ) . eN  E E with 

IA.I --- 1 for a/l n E N. Let bl be an ultrafilter on N. /5 A := {A. : n E N} is 

uncountable, then there exists a diffuse probability measure/~ supported on A, a 

Banaeh function lattice W with continuous injections 

L~ ~.~ W~--~ LI(A,~)  

and a positive isometry P : W ~ Eu such that the following diagram commutes: 

Eu 

W 

Tu 
Eu 

P 

J W 
M 

Here, M is the multiplication operator Mr(A) := A./(A) for e v e r y / 6  W, A e A. 

Proof: Since E is superreflexive we observe that the dual of Eu can be identified 

with E~ = (E~)u with respect to the bilinear form 

( (u . ) ,  (~o.)) := U - lira (u . ,  ~.) 

for (un) �9 EU, (~Pn) E E~ (see the remarks preceding Corollary 2.3). Next the 

existence of a diffuse probability measure tz E C(A)' follows from [Se], 19.7.6, 

8.5.5. Since the atomic measures are weak*-dense in C(A) ~ we find for every 

n E N a probability vector ( a l , , ,  ... , a , , , )  such that the sequence of atomic 

m e a s u r e s  
n 

/~n : =  E ~k,n6Xk 
k=l 

weak*-eonverges to/~. Consider then the n-dimensional subspaee 

E .  := lin {el, ... , e . }  

in E and its dual E~ := lin{el,  ... , e . }  in E ~ where ek are the canonical basis 

vectors of the Banach sequence lattices E and E ~. By Lemma 3.4 there exist 

Un:~k,nek  EEn and ~n'~-~[k,nek EEtn 
k=l k=l 
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such that I lu.II  = 1 = I1~.11', / ~ k , : r k , .  = ~ k , .  fo r  1 < k < n mad therefore 

n n 

(Un,~O.) = Z flk,.Tk,. = E ak,n = I for all n E N. 
k=l  k = l  

Using the elements u ,  E E+ and ~n E E ~ + we define elements in the ultrapower 

by 

~z:=(u,)EEu and ~ : = ( ~ o , ) E E ~ .  

The ultrapower Eu is a reflexive Banach lattice and therefore has order contin- 

uous norm (see [Sc], II.5.10). Hence there exists a band decomposition 

Eu = E1 @ E2, 

such that ~ is strictly positive on E1 while ~ vanishes on E2. By [Sc], IV.9.3, we 

conclude that E1 is a dense ideal in the AL-space (Eu, ~) (see [Sc], II.8.Example 

1 for this notion). Define now a linear operator P from C(A) into the principal 

ideal (Eu)~, generated by fi ([Sc], p.57) by setting 

n 

P/:= (~/~k,,,Y(:'klekl,,~N 
k----1 

for every f E C(A). This operator is positive and satisfies 

n n 

(I Pfl, ~) =/'/- lira (I ~ ~k,.f(A~)ek I, ~ 7k,.ek) 
k=l  k=l  
n n 

= U - lira (~--~/h,. If(Ak)le~, ~'rk,.ek) 
k=l  k=l  

= u - lira ~ / ~ , . ' ~ , . t f ( ~ k ) l ( e k ,  ek) 
k=l  

= u - lira ~ ~k,~If(Ak)l 
k=l  

= ~ / -  lira ([fl,/~-) 

=/Ifl,/z) 

for the measures p and Pn fixed above. Hence P extends continuously to an 

isometry from LI(A, p) into (Eu, ~) = (El, ~) mapping L~C(A, p) into the prin- 

cipal ideal in E1 generated by the component of fi in El. If we denote by 
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W the inverse image of E1 we obtain a Banach function lattice and injections 

L~176 p) r W ~ LI(A, #). In the final step we take the multiplication operator 

MS( ) := 

defined on LI(A,p). For f E C(A) it follows that 

n 

PM f = ( E  flk,n~f(.Xk )ek )n~N 
k=l 

n 

= ( T ( ~  flk,nf(~k)ek))nEN 
k=l 

n 

k=l 

= TuPf. 

By continuous extension the same holds for every f E W, hence the stated 

diagram commutes. I 

The remarkable aspect of the above multiplication operator M E s is 

twofold. 

1. The operator M is an isometry, hence the stable subspace 

W, := {f E W : lim IIM"fll = 0) 

reduces to zero. 

2. The operator M has empty point spectrum, hence 

Wr := lin{f E W : M f  = Xf, IXI = 1} 

reduces to zero. 

Such behavior has already been encountered in Example 1.7 and implies that M 

and hence Tu is unstable. As a consequence we have the following 

COROLLARY 3.6: If T E s is as in Proposition 3.5 and has uncountable 

spectrum a(T) = A := {~,, : n E N}, then T is not superstable. 

We now tie together Propositions 3.2, 3.3 and 3.5 in order to prove Conjecture 

2.5. We have to show that given a contraction T E/~(E), E superreflexive, for 

which 

A := a(T) n F is uncountable, 
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we can find an ul t ra l i l ter / /  on N and a subspace of Eu on which Tu is not 

stable. First, Proposition 3.2 allows to assume that A is contained in the point 

spectrum. Take An E Pa(T)  such that A -- {An : n E N} and eigenvectors xn E E 

such that Txn = Anx, and consider the closed, T-invariant subspace F generated 

by {xn : n E N}. The restriction of T to F has discrete spectrum and we can 

apply Proposition 3.3 obtaining a Banach sequence lattice Z on which T acts as 

the multiplication operator M corresponding to the values (A, : n E N}. The 

ultrapower of M E s  is contained in Tu E ~(Eu) and contains an unstable 

part according to Proposition 3.5 and Corollary 3.6. Hence T is not superstable 

and we have proved the final result. 

THEOREM 3.7: Let T be a power bounded linear operator on a superreflexive 

Banach space E. Then 

(ABLP)  A := (r(T) N r is countable 

if  and only • T is superstable. 
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